WASTE SITE RECLASSIF	ICATION FORM	
Operable Unit: 300-FF-2 Waste Site Code(s)/Subsite Code(s): 600-117 (310 TEDF Building)	Control No.: 2	2012-117
Reclassification Category: Interim S Final Reclassification Status: Closed Out RCRA Postclosure Approvals Needed: DOE Ecology Description of current waste site condition:	No Action ☐ Consolidated ☐ EPA ☒	Rejected None
The 600-117 waste site is synonymous with the 310 Treated Effluen 300-FF-2 Operable Unit. The 600-117 waste site was assigned to a unplanned release, nor does it otherwise represent contaminated methe 310 TEDF was demolished in accordance with Action Memorance Work Plan (RAWP) for 300 Area Facilities, DOE/RL-2004-77, Rev. 2 The 310 TEDF was a Clean Water Act; National Pollutant Discharge plant. 310 TEDF treated non-hazardous and non-radiological process facility was deactivated in 2010 with demolition of the 310 Building a Investigation of soils beneath the floor slab following demolition of the occurred during past operations. Site completion was performed in accordance with Section 2.6 of the underlying the building. Field investigations that included radiological Final radiological surveys consisted of performing Global Positioning	a physical structure and is nedia adjacent to or beneath dum #3 for the 300 Area and 2. Elimination System permit ass waste water from 300 Area and foundation being completed at structure confirmed no real surveys and visual inspectal.	ot considered an the building. As such, dithe Removal Action atted waste water treatment rea operations. The eted in December 2012, eleases from the building valuation of soils attention were performed.
survey results (reference Attachment 1 - GPERS maps) for building above background concentrations, which therefore meet the 300-FF scenario. In addition, the foundation of the main process sump loca radiological surveys were performed on the sump surfaces and no raconcentrations (reference Attachment 2 – 310 Sump RSR). A visual and no staining or other anomalous conditions were observed. These with remedial action objectives (RAOs) established by the <i>Interim Ac Unit, Hanford Site, Benton County, Washington</i> , U.S. Environmental (300-FF-2 ROD) (EPA 2001).	footprint soils found no radi -2 Remedial Action Goals (ted below-grade will be left adionuclides are present ab all inspection of the excavati se evaluations have been position Record of Decision for	onuclides are present RAGs) for residential in place. Hand held ove background on soils was performed erformed in accordance

WASTE SITE RECLASSIFICATION FORM								
Operable Unit: 300-FF-2	Control No.: 2012-117							
Waste Site Code(s)/Subsite Code(s):								
600-117 (310 TEDF Building)								
Basis for reclassification:								
subsurface soils support a reclassification of this remedial action goals established by the 300-FF-	surveys and inspection results for 600-117 (310 TEDF Building) waste site to Interim Closed Out. The 600-117 waste site achieves the -2 Interim Action ROD (EPA 2001). The results of radiological surveys equire long-term institutional controls. The results also show that site Columbia River.							
Regulator comments:								

WASTE SI	TE RECLASSIFICATION FORM
Operable Unit: 300-FF-2	Control No.: 2012-117
Waste Site Code(s)/Subsite Code(s):	
600-117 (310 TEDF Building)	
Waste Site Controls:	
Engineered Controls: Yes No Institut	tional Controls: Yes No O&M Requirements: Yes No
If any of the Waste Site Controls are checked Ye Decision, TSD Closure Letter, or other relevant of	es, specify control requirements including reference to the Record of documents:
M. S. French	MFrend 12/6/12
DOE Federal Project Director (printed)	Signature Date
Ecology Project Manager (printed)	Signature Date
L. E. Gadbois	Carry Gadlos 12-6-12
EPA Project Manager (printed)	Signature Date

WASTE SITE RECLASSIFICATION FORM (2012-117)

ATTACHMENT 1

600-117 (310 BUILDING) EXCAVATION GLOBAL POSITIONING ENVIROMENTAL RADIOLOGICAL SURVEY MAPS

		(80)			
×					
			R		

Site View

Bkg Location 1030 meters South 1174 cpm

Copy

Legend

NET CPM

× <1761 1761 - 5000

5000 - 10000

10000 - 25000

25000

Summary Statistics

Coverage File: N179 Number of Data Pnts: 1711 Type of Survey: gamma Max GCPM: 2291 Avg Bkg CPM: 1174 Survey Date: 11/28/2012 Area Surveyed: 2150 m^2 Project File: ESRFRM120138

Pdf File: ESRFRM120138C

300 D4 300 / 310 TEDF **GPERS Radiological Survey Gamma Track Map**

0 2 4 6 8 10

Survey Map Prepared By Bruce Coomer, ESI

WASTE SITE RECLASSIFICATION FORM (2012-117)

ATTACHMENT 2

600-117 (310 BUILDING) PROCESS SUMP RADIOLOGICAL SURVEY RECORD

RADIOLOGICAL SURVEY RECORD

	10.00	1000	-
Page	1	of	2
. age			-

	ress	Survey # RSR – 300PS-12- ५५५⊋
Date 12/4/12	Time 1400	Location 300 PS/310 Pit
	Date	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Description

310 Pit Survey

References: (e.g., SRTA, ASER, LASER, RSP, Work Package)

TA-07-SR-10/12

Performed Work Progress Survey of the 310 Excavation Pit.

Performed directs (on sides and floor of pit) and tech smears (on items greater than 1" - rocks, concrete).

No contamination was found

Please note that this area is not considered a radiological area and was not posted.

CA	Contamina Area	tion H	High CA Contamination Area	RBA Radio	logical Buffer Area	Airborne ARA Radioactivity Area	[AS] Air Sample Location	RMA	Radioa Material	ictive s Area	RA	Radiation Area	HRA	Hig Radia Are	tion VHR	Very High Radiation Area
0	Technical Smear	# Dire	ect M Large Area Wipe	T Transferable	General Area Rates =Uncom Meter Read (mR/hr)	rected rates in	ion readings are units of mR/hr u nerwise indicated	nless	Contact 30 cm		Neutrons mRem/hr)	Δ	Micro Rem (μR/hr)		Soil Contamination Area	Radiologica
						Ins	truments	1								
	Мос	lel		ID#		Cal Du Date		Mod	del			ID :	#		Cal Da	
	236	360 SCLL8-0917		7	10/19/	13	43-	93		DTLLP-1014			10/19/13			
	2224	1-3	-3 SCLLB-0180		80	5/14/1	3	43-9	93		DTLLP-0829				5/14/13	
	N/A N/A			N/A		N/A		1	N/A				N/A			
De	CT Nan b Pote ve Cul	et .	ignature/Da			12/4/1 12/4/1	2 Rand	dy Gi	erviso	1457		Signati	ure/Da	ite:		-1/2

RADIOLOGICAL SURVEY RECORD

Survey # RSR -

Page: 2 of 2 300PS-12-YYYQ

Contamination Measurement Information¹

Circled values indicate Removable β contamination in mrad/hr β

No	Description of		Remov (dpm/10	rable 0 cm²)		Total (dpm/100 cm²)					
No.	Item or Location	α	α C-F	βγ	β–γ C-F	α	α C-F	β–γ	β–γ C-F		
0	Sides of pit - I per	<20	7	<1000	10	N/A	N/A	N/A	N/A		
0	Bottom of pit - 6	<20	7	<1000	10	N/A	N/A	N/A	N/A		
#	All Areas Surveyed	N/A	N/A	N/A	N/A	<500	7	<5000	10		
			0								
						***************************************			/		

Unless stated otherwise in the "References" section, exempted β-γ (i.e., C-14, Fe-55, Ni-59, Ni-63, Se-79, Tc-99, Pd-107, Eu-155) contamination levels are ≤ 10 times the β-γ contamination levels shown above.

Corrected Dose Rate Calculations

Show all work. CF = 1 unless noted.

	Contact F	Readings	30 cm Readings				
Location	β (mrad/hr) (WO-WC) X CF = DR	γ (mR/hr) WC X CF = DR	β (mrad/hr) (WO-WC) X CF = DR	γ (mR/hr) WC X CF = DR			
				A			
				The second secon			
		Personal Per					